117 research outputs found

    Rapid Online Analysis of Local Feature Detectors and Their Complementarity

    Get PDF
    A vision system that can assess its own performance and take appropriate actions online to maximize its effectiveness would be a step towards achieving the long-cherished goal of imitating humans. This paper proposes a method for performing an online performance analysis of local feature detectors, the primary stage of many practical vision systems. It advocates the spatial distribution of local image features as a good performance indicator and presents a metric that can be calculated rapidly, concurs with human visual assessments and is complementary to existing offline measures such as repeatability. The metric is shown to provide a measure of complementarity for combinations of detectors, correctly reflecting the underlying principles of individual detectors. Qualitative results on well-established datasets for several state-of-the-art detectors are presented based on the proposed measure. Using a hypothesis testing approach and a newly-acquired, larger image database, statistically-significant performance differences are identified. Different detector pairs and triplets are examined quantitatively and the results provide a useful guideline for combining detectors in applications that require a reasonable spatial distribution of image features. A principled framework for combining feature detectors in these applications is also presented. Timing results reveal the potential of the metric for online applications. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    Performance comparison of image feature detectors utilizing a large number of scenes

    Get PDF
    Selecting the most suitable local invariant feature detector for a particular application has rendered the task of evaluating feature detectors a critical issue in vi sion research. No state-of-the-art image feature detector works satisfactorily under all types of image transformations. Although the literature offers a variety of comparison works focusing on performance evaluation of image feature detectors under several types of image transformation, the influence of the scene content on the performance of local feature detectors has received little attention so far. This paper aims to bridge this gap with a new framework for determining the type of scenes, which maximize and minimize the performance of detectors in terms of repeatability rate. Several state-of-the-art feature detectors have been assessed utilizing a large database of 12936 images generated by applying uniform light and blur changes to 539 scenes captured from the real world. The results obtained provide new insights into the behaviour of feature detectors

    A Paradigm Shift: Detecting Human Rights Violations Through Web Images

    Get PDF
    The growing presence of devices carrying digital cameras, such as mobile phones and tablets, combined with ever improving internet networks have enabled ordinary citizens, victims of human rights abuse, and participants in armed conflicts, protests, and disaster situations to capture and share via social media networks images and videos of specific events. This paper discusses the potential of images in human rights context including the opportunities and challenges they present. This study demonstrates that real-world images have the capacity to contribute complementary data to operational human rights monitoring efforts when combined with novel computer vision approaches. The analysis is concluded by arguing that if images are to be used effectively to detect and identify human rights violations by rights advocates, greater attention to gathering task-specific visual concepts from large-scale web images is required

    Hardware Based Scale- and Rotation-Invariant Feature Extraction: A Retrospective Analysis and Future Directions

    Get PDF
    Computer Vision techniques represent a class of algorithms that are highly computation and data intensive in nature. Generally, performance of these algorithms in terms of execution speed on desktop computers is far from real-time. Since real-time performance is desirable in many applications, special-purpose hardware is required in most cases to achieve this goal. Scale- and rotation-invariant local feature extraction is a low level computer vision task with very high computational complexity. The state-of-the-art algorithms that currently exist in this domain, like SIFT and SURF, suffer from slow execution speeds and at best can only achieve rates of 2-3 Hz on modern desktop computers. Hardware-based scale- and rotation-invariant local feature extraction is an emerging trend enabling real-time performance for these computationally complex algorithms. This paper takes a retrospective look at the advances made so far in this field, discusses the hardware design strategies employed and results achieved, identifies current research gaps and suggests future research directions

    Memorable Maps: A Framework for Re-defining Places in Visual Place Recognition

    Get PDF
    This paper presents a cognition-inspired agnostic framework for building a map for Visual Place Recognition. This framework draws inspiration from human-memorability, utilizes the traditional image entropy concept and computes the static content in an image; thereby presenting a tri-folded criteria to assess the `memorability' of an image for visual place recognition. A dataset namely `ESSEX3IN1' is created, composed of highly confusing images from indoor, outdoor and natural scenes for analysis. When used in conjunction with state-of-the-art visual place recognition methods, the proposed framework provides significant performance boost to these techniques, as evidenced by results on ESSEX3IN1 and other public datasets
    • …
    corecore